Key Lessons for Mine Pit Lakes and Mine Closure

Clint McCullough Ph.D.
Principal, Mine Water and Environment Research Centre (MiWER)
Edith Cowan University, Joondalup, Western Australia

Principal Environmental Scientist, Mine Closure Lead, Golder Associates Pty Ltd, West Perth, Western Australia
Mine Pit Lakes

- International phenomenon
 - Open-cut mining more common
 - Technological advances; larger pit voids
 - Many Australian examples
 - (WA: 1,800 in 2003)
Pit Lakes Districts

<table>
<thead>
<tr>
<th>Lake District</th>
<th>Country</th>
<th>Number of lakes in</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athabascan Oil Sands</td>
<td>Canada</td>
<td>0 current (26 proposed)</td>
<td>Westcott & Watson (2007)</td>
</tr>
<tr>
<td>Borská Nížina</td>
<td>Slovakia</td>
<td>11 current</td>
<td>Otahel'ová and Otahel' 2006</td>
</tr>
<tr>
<td>Central German, Lusatian, Rhenish districts</td>
<td>Germany</td>
<td>370 current; 205 current</td>
<td>Schultze et al. in press</td>
</tr>
<tr>
<td>Collie Lake District</td>
<td>Australia</td>
<td>13 current (more proposed)</td>
<td>Kumar et al. in press</td>
</tr>
<tr>
<td>Iberian</td>
<td>Spain</td>
<td>22 current</td>
<td>Sánchez-Espanã et al. 2008</td>
</tr>
<tr>
<td>Łęknica</td>
<td>Poland</td>
<td>>100</td>
<td>Żurek in press</td>
</tr>
</tbody>
</table>

Potential Closure Risks

Evaporation causing salinisation

Contamination of surface waters

Feral animal watering

Contaminant bioaccumulation

Groundwater losses

Drowning

Potential Closure Risks

Water Quality

Catchment Scale

- Pit lakes should be incorporated back into the landscape\(^1\)
- Both aesthetic and landscape ecosystem function requirements
- As per all land forms in good closure practice

Beneficial End Uses

Aquatic Habitat Loss

- Pressure on water resources increasing
 - Increasing demand
 - Climate change predictions
 - International loss of aquatic habitats
Restoration - Revegetation

- Ecological succession
 - Riparian vegetation; bank stabilisation, vegetation establishment

Van Etten et al. (in review). Setting restoration goals for restoring pit lakes as aquatic ecosystems: a case study from south west Australia. Mining Technology

- Regional examples
 - Reference systems provide restoration guidance
 - Acknowledgement of seration important
Monitoring

- Long term water balance and water quality?
 - Physico-chemical/biological monitoring *essential*
 - Modelling typically required
- Demonstration that closure criteria are met
Lake Kepwari Void (WO5B) Closure

- Began with Collie River South Branch (CRSB) diversion

- Rehabilitation:
 - Overburden dumps/exposed seams covered with waste rock
 - Battered and revegetated with endemic vegetation
 - Rapid-filled by CRSB diversion 2002-2005
 - AMD still developed, water ca. pH <4
 - Diversion engineered to 1:100 year flood event

Lake Breach and Decant

- River breach
 - Storm event August 2011
 - River rose overtopping south bank; 1.7 m height increase
 - Subsequent decant to lower CRSB
 - No significant impacts to downstream river values
 - Significant *improvement* to lake water quality
Collie River Inflow

EC (mS/cm)

pH

Depth (m)
Conclusions

- Pit lakes increasingly common mining legacy
 - Significant mine closure risks
 - Significant legacy opportunities

 ... but only when adequately planned ...

- Risks and beneficial end uses managed through:
 - Explicit regard in the closure planning process
 - Life-of-mine closure consideration
Thankyou. Questions?